
DOCUMENT RESUME

ED 381 582 TM 022 i54

AUTHOR Mislevy, Robert J.
TITLE Test Theory Reconceived.
INSTITUTION Educational Testing Service, Princeton, N.J.
SPONS AGENCY National Center for Research on Evaluation,

Standards, and Student Testing, Los Angeles, CA.;
Office of Naval Research, Arlington, VA. Cognitive
and Neural Sciences Div.

REPORT NO ETS- RR- 94 -2 -ONR

PUB DATE Feb 95
CONTRACT N00014-91-J-4101
NOTE 63p.; Based on an invited address presented to the

National Council of Measurement in Education
(Atlanta, GA, April 12-16, 1993).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS Cognitive Psychology; Developmental Psychology;

*Educational Testing; *Inferences; *Research
Methodology; *Statistical Analysis; Test
Interpretation; *Test Theory

ABSTRACT
Educational test theory consists of statistical and

methodological tools to support inferences about examinees'
knowledge, skills, and accomplishments. The evolution of test theory
has been shaped by the nature of users' inferences which, until
recently, have been framed almost exclusively in terms of trait and
behaviot,1 psychology. Progress in the methodology of test theory
enabled users to extend the range of inference, sharpen their logic,
and ground their interpretations more solidly within these
psychological paradigms. In particular, the focus remained on
students' overall tendency to perform in prespecified ways in
prespecified domains of tasks; for example, to make correct answers
to mixed-number subtraction problems. Developments in cognitive and
developmental psychology broaden the range -.)f desired inferences,
especially to conjectures about the nature and acquisition of
students' knowledge. Commensurately broader ranges of data-types and
ftudent models are entertained. The same underlying principles of
inference that led to standard test theory can be applied to support
inference in this broader universe of discourse. Familiar models and
methods--sometimes extended, sometimes reinterpreted, sometimes
applied to problems wholly different from those to which they were
first devised--can play a tseful role to this end. Contains three
tables and seven figures. (Author)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

***********************************************************************



N
00
len

-4
00

CIre))
LL1

U S DEPARTMENT OF EDUCATION
Office 04 Educational Research and Improvement

EDUXATIONAL RESOURCES INFORMATION
CENTER (ERIC)

q/4his document hes been remoouced as
received torn the person or orgenuatidn
oriGmaling ,1

r Minor changes have been made to improve
reproduction Quality

Porn s of new or opm.ons slated in inis docr,
menl dO not neCet.Sanly represent official
OERI POSII.011 or pohcy

TEST THEORY RECONCEIVED

Robert J. Mislevy

RR- 94 -2 -ON R

This research was sponsored in part by the
Cognitive Science Program
Cognitive and Neural Sciences Division
Office of Naval Research, under
Contract No. N00014-91-J-4101
R&T 4421573-01

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, NJ

February 1995

Reproduction in whole or in part is permitted
for any purpose of the United States
Government.

Approved for public release; distribution
unlimited.

BEST COPY AVAILABLE



REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting ourden 'Or this collection of information is estimated to average ill hour per response, including the time for reyiewitng instructio,ns, searching existing
aspect ofmreao and ng aindtgouramrtaetriosnserSeicneds.cgmiremaeonrtastregarding h l s burburden

Operations
ii omras ea

and
ialey rtns,other spe o

ea adfor c °
gathering and rna ntamaintainingin g;

including
giantga

suggestions
need .

po 1215 Jefferson
Davis Highway. Suite 12C4. Arlington, JA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction. Project (0704.0188). Washington, DC 20503

1. AGENCY USE ONL,' (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Test Theory Reconceivei

5. FUNDING NUMBERS

G. N00014 -91 -J -4101

PE. 61153N

PR. RR 04204

TA. RR 04204-01

WU. R & T 4421573-01

6. AUTHOR(S)

Robert J. Mirlevy

7. PERFORMING ORGANIZATION NAME(S)

Educational Testing Service

Rosedale Road

Princeton, NJ 08541

9. SPONSORING/MONITORING AGENCY

Cognitive Sciences

Code 1142CS

Office of Naval Research

Arlington, VA 22217-5000

AND ADDRESS(ES) 8. PERFORMING ORGANI2AION
REPORT NUMBER

RR-94-2-0NR

NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

Yes

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited

12b. DISTRIBUTION CODE

N/A

13. ABSTRACT (Maximum 200 words)

!Educational test theory.consists of statistical and methodological tools to support

!inference about examinees' knowledge, skills, and accomplishments. The evolution of

test theory has been shaped by the nature of users' inferences, which until recently,

have been framed almost exclusively in terms of trait and behavioral psychology.

Progress in the methodology of test theory enabled users to extend the range of

inference, sharpen the logic, and ground their interpretations more solidly within

these psychological paradigms. In particular, the focus remained on students' over-

all tendency to perform in prespecified ways in prespecified domains of tasks; for

example, to make correct answers to mixed-number subtraction problems. Developments

in cognitive and developmental psychology broaden the range of desired inferences,

especially to conjectures about the nature and acquisition of students' knowledge.

Commensurately broader ranges of data-types and student models are entertained. The

Isar ! underlying principles of inference that led to standard test theory can be

lappliecl to support inference in this broader universe of discourse. Familiar models

14. SUBJEC T TERMS
A

,Bayesian inference networks, cognitive psychology, intelligent

tutoring systems, item response theory, test theory.

15. NUMBER OF PAGES
60

16. PRTCE CODE
N/A

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
Unclassified Unclassified

19. SECURITY CI ASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pnscribod by ANSI Std 13918
29t3-132



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

and methods--sometimes extended, sometimes reinterpreted, sometimes applied to

problems wholly different from those for which they were first devised--can play

1

a useful role to this end.

DD Form 1473, JUN 86 (Reverse) SEUORIT r CLAz;SIFICAriON OF THI;: PAGE



Test Theory Reconceived

Robert J. Mislevy

Educational Testing Service

January, 1995

This paper is based on an invited address to the annual meeting of the National Council of

Measurement in Education in Atlanta, April, 1993. I am grateful to the organizer of the

session, Suzanne Lane, and to the discussants, Robert Glaser, H.D. Hoover, and Richard

Snow. Their comments have been incorporated, as have those of Isaac Bejar, Kalle

Gerritz, No Molenaar, Howard Wainer, and Rebecca Zwick. The work was supported by

(1) Contract No. N00014 -91 -J -4101, R&T 4421573-01, from the Cognitive Science

Program, Cognitive and Neural Sciences Division, Office of Naval Research, (2) the

National Center for Research on Evaluation, Standards, Student Testing (CRESST),

Educational Research and Development Program, cooperative agreement number

R117G10027 and CFDA catalog number 84.117G. as administered by the Office of

Educational Research and Improvement, U.S. Department of Education, and (3) the

Statistical and Psychometric Research Division of Educational Testing Service. The

HYDRIVE example is based on a project by Armstrong Laboratories of the United States

Air Force and directed by Drew Gitomer.
r.



Copyright © 1995. Educational Testing Service. All rights reserved

0



Abstract

Educational test theory consists of statistical and methodological tools to support

inference about examinees' knowledge, skills, and accomplishments. The evolution of test

theory has been shaped by the nature of users' inferences, which, until recently, have been

framed almost exclusively in terms of trait and behavioral psychology. Progress in the

methodology of test theory enabled users to extend the range of inference, sharpen the

logic, and ground their interpretations more solidly within these psychological paradigms.

In particular, the focus remained on students' overall tendency to perform in prespecified

ways in prespecified domains of tasks; for example, to make correct answers to mixed-

number subtraction problems. Developments in cognitive and developmental psychology

broaden the range of desired inferences, especially to conjectures about the nature and

acquisition of students' knowledge. Commensurately broader ranges of data-types and

student models are entertained. The same underlying principles of inference that led to

standard test theory can be applied to support inference in this broader universe of

discourse. Familiar models and methodssometimes extended, sometimes reinterpreted,

sometimes applied to problems wholly different from those for which they were first

devisedcan play a useful role to this end.

Keywords: Bayesian inference networks, cognitive psychology, intelligent tutoring

systems, item response theory, test theory.



Summary test scores, and factors based on them, have often been thought of
as "signs" indicating the presence of underlying, latent traits. ... An alternative
interpretation of test scores as samples of cognitive processes and contents,
and of correlations as indicating the similarity or overlap of this sampling, is
equally justifiable and could be theoretically more useful. The evidence from
cognitive psychology suggests that test performances are comprised of
complex assemblies of component information-processing actions that are
adapted to task requirements during performance. The implication is that sign-
trait interpretations of test scores and their intercorrelations are superficial
summaries at best. At worst, they have misled scientists, and the public, into
thinking of fitndamental, fixed entities, measured in amounts. Whatever their
practical value as summaries, for selection, classification, certification, or
program evaluation, the cognitive psychological view is that such
interpretations no longer suffice as scientific explanations of antitude and
achievement constructs.

Snow & Lohman, 1989, p. 317.

Introduction

Test theory, as it is usually thought of, is part of a package. It encompasses models

and methods for drawing inferences about what students know and can doas cast in a

particular admixture of ideas from measurement, education, and psychology. This

framework generates a universe of discourse: the nature of the educational problems and

potential solutions one defines, the purposes and values of assessment, the kinds of

statements one makes about students, and the ways one gathers data to inform and support

these statements. Test theory, as it is usually thought of, is machinery for addressing

inferential problems within this framework: What kinds of evidence are needed to support

inferences about students? How much faith can be placed in the evidence, and in the

ensuing statements? Are elements of evidence overlapping, redundant, or contradictory?

When must different questions be asked or additional situations posed to distinguish among

competing explanations of what is observed?

The emerging paradigm of cognitive psychology, with its focus on the nature and

the acquisition of competence, prompts new considerations about how to collect and

interpret evidence about students' learning. This paper argues that aspects of the iiiodels

and methods that have evolved within standard test theory can be extended, augmented,

and reconceived to address problems cast in this broader universe of discourse. The

argument can be summarized as follows:
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The methodological paradigm referred to here as standard test theory arose under

the psychological paradigm of trait psychology. The target of inference is a

person's tendency to act in prespecified ways in prespecified domains of situations

(e.g., to make correct rather than incorrect answers to multiple-choice test items).

This methodological approach was readily adapted and extended to support:

assessment cast in terms of behavioral psychology, addressing domains of tasks

which modifying behavioral tendencies toward was the goal of instruction (e.g.,

increasing students' chances of writing coherent essays on specified topics). The

nature of competence so defined, and the processes by which competence

increases, lay largely outside the universe of discourse of test theory proper.

The cognitive and developmental psychological paradigms extend inquiry to the

nature and the acquisition of knowledge and skills. Inferences cast in these terms

encounter issues of weight and coverage of evidence, just as do inferences cast in

terms of trait and behavioral psychology. The same inferential principles that led to

standard test theory can be gainfully applied to this endsometimes even some of

the same models and methods, albeit construed from the perspective the operative

psychological paradigm.

To accomplish this objective, it is necessary to disentangle the statistics from the psy-

chology in standard test theory; to view test theory as the application of more general princi-

ples of inference (Mislevy, 1994). General issues of evidence in inference (see Schum, 1987,

1994), including the role of paradigms in scientific and practical work, are first discussed.

The interplay between methodological and psychological paradigms in educational assessment

is then addressed, with emphasis on considerations prompted by cognitive and developmental

psychology. Examples from current projects illustrate central points.

Evidence, Inference, and Paradigms

Inference is reasoning from what one knows and what one observes, to

explanations, conclusions, or predictions. One attempts to establish the weight and

coverage of evidence in what is observed. The very first question that must be addressed is

"Evidence about what?" Schum (1994, p. 20) points out the crucial distinction between

data and evidence: "A datum becomes evidence in a particular inference when its relevance

to this inference has been established." The same observation can be direct evidence for

some conjectures and indirect evidence for others, and wholly irrelevant to still others. In
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educational assessment, one observes specific actions or products that students produce in

specific circumstances, sometimes as interpreted by specific observers. These are the data.

To evaluate progress or guide further instruction, however, one talks at a higher level of

abstraction, using specific observations as evidence for subsequent inferences. To use

Kuhn's (1970) term, these more abstract conjectures must be constructed within some

"paradigm" for the nature and the acquisition of competence.

Kuhn used this term to describe a set of interrelated concepts that frames research in

a scientific field. Of all the phenomena that can be experienced directly or indirectly, a

paradigm focuses on patterns in a circumscribed domain. The patterns, and the language

and the concepts used to express them, determine the kinds of things that will be talked

about and the particular things that can be said. A paradigm frames what is construed as

problems, and how attempts to solve them are to be evaluated. Most scientific research is

carried out within an existing paradigm. Kuhn referred to solving the outstanding puzzles a

paradigm poses as "normal science"improving measurements, developing inferential

machinery, working out relationships in greater detail, extending ideas to new situations,

and integrating previously separate elements. Applied problem-solving takes the same

flavor. The concepts and patterns of a paradigm are taken as givens, into which the

elements of a particular application are mapped. These structures guide data-gathering,

interpretation, and decision-making.

"Scientific revolutions," in which a new major paradigm displaces an existing

paradigm, were Kuhn's focus. A paradigm shift can be precipitated by a paradigm's

failure to deal with some outstanding problemperhaps a puzzle that is intractable as

framed in the existing paradigm, or a problem it cannot frame at all. New concepts arise;

new relationships are highlighted. Some concepts and relationships overlap with those of

the previous paradigm, as do methodologies and phenomena addressed, but the essential

organizing structure changes. A paradigm shift redefines what scientists see as problems,

and reconstitutes their tool kit for solving them. Previous models and methods remain

useful to the extent that certain problems the old paradigm addresses are still meaningful,

and the solutions it offers are still satisfactory, but now as viewed from the perspective of

the new paradigm.

As an example, civil engineers designed bridges in 1893 using Euclid's geometry

and Newton's laws of mechanics, in the prevailing belief that the patterns they embodied

were the "true" description the universe. The variables were "the universe's" variables,
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with applications departing from truth only in terms of simplifications and measurement

errors. The quantum and relativistic revolutions shattered this view. Yet engineers today

design bridges using essentially the same formulas. Has anything changed?

The equations may be the same, but the conceptual framework within which they

are comprehended is decidedly not. Today the equations are viewed as engineering tools,

justified to the extent that they capture patterns in nature well enough to solve the problem

at hand, even as judged by the standards of the quantum and relativistic paradigms.

(Bridges are neither so small as too require quantum -nodels nor so fast-moving as to

demand relativistic corrections.) And while some engineers continue to attack problems

such as bridge-building that first arose under previous paradigms with a toolkit containing

many methods developed under those paradigms, other engineers attack problems that

could not even be conceived last centurysuperconductivity, microchip design, and

fusion, to name a few. These problems demand a toolkit founded upon the concepts,

variables, and relationships of new paradigms; some familiar tools, albeit reconceived,

others totally new.

Psychological Paradigms and Test Theory

A conception of student competence and a purpose for assessment determine the

kind of information that is needed for an assessment, and should drive in turn the particular

methods that are needed to get students to act in ways that reveal something about their

competenciesthat is, the forms of assessment (Berlak, 1992). The following sections

discuss implications that the trait, behaviorist, and cognitive psychological paradigms hold

for conceptions of competence. It is beyond the scope of this presentation to consider all

the ways that different purposes entail different evidential requirements, even under a given

conception of competence; the reader is referred to Millman and Greene (1989) on

dimensions of purpose that shape the form of assessments.

As noted above, test theory is machinery for reasoning from students' behavior to

conjectures about their competence, as framed in a particular conception of competence. In

any particular application, this conception takes the form of a set of aspects of skill and

knowledge that are important for the job at hand, whether that job be summarizing the

competencies students have acquired thus far or guiding instruction to increase their

competencies further. These are the variables in what might be called a "student model--a

simplified description of selected aspects of the infinite varieties of skills and knowledge
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that characteriz: real students Although this is the level at which one. evaluates students'

learning and plans further instruction, these variables are not directly observable.

Depending on the purpose, one might distinguish from one to hundreds of aspects

of competence in a student model. They might be expressed in terms of numbers,

categories, or some mixture; they might be conceived as persisting over long periods of

time, or apt to change atihe next problem-step. Depending on the purpose of .he

assessment and the operative psychological paradigm, they might concern tendencies in

behavior, conceptions of phenomena, available strategies, or levels of development. At

one extreme, "verbal and quantitative ability" are the only two variables in the student

model underlying the Scholastic Assessment Test. At the other extreme, the student model

in John Anderson's LISP tutor (Anderson & Reiser, 1985) concerns mastery of hundreds

of production rules (some correct, others erroneous) in sufficient detail to provide answers

to any problem in a task domain.

Trait psychology and "mental measurement"

The most familiar tools of standard test theory began to evolve a century ago under

the paradigm of trait psychology, initially in a quest to "measure people's intelligence."

Messick (1989, p, 15) defines a trait as "a relatively stable characteristic of a personan

attribute, enduring process, or dispositionwhich is consistently manifested to some

degree when relevant, despite considerable variation in the range of settings and

circumstances." Hypothetical (hence, inherently unobservable) numbers are proposed to

locate people along continua of mental characteristics, just as their heights and weights

locate them along continua of physical characteristics. Under trait psychology, the

variables in the student model are the values of the traits of interest.

When Charles Spearman used scores on a fixed set of knowledge and puzzle-

solving tasks to "measure intelligence," the notion of a trait was not new. Paul Broca had

attempted to assess "intelligence" in the previous century by charting cranial volumes, as

had Francis Galton by measuring reaction times. Neither was the idea of observing

behavior in samples of standardized situations new. Three thousand years earlier, the

Chinese discovered that observing an individual's performance under controlled conditions

could support predictions of performance under broader conditions over a longer period of

time (Wainer et al.. 1990, p. 2). The essence of mental measurement was, rather, a

confluence of these concepts: Identifying "traits" with tendencies to behave in prescribed

ways in these prescribed situations. Variables so defined were viewed as the way to

1.2
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characterize peoplethe psychologyand test scores so obtained were accepted as the

way to obtain the requisite evidencethe methodology: "Intelligence is what tests of

intelligence test, until further scientific observation allows us to extend the definition"

(Boring, 1923, p. 35). As in physical measurement, great care was taken to define the

tasks, the conditions under which they were administered, and the rules for mapping

observations to summary scores.

This conjoining of a psychologica: and a methodological paradigm suited the mass

educational system that also arose in the United States at the turn of the century (Glaser,

1981). Educators saw their challenge as selecting or placing large numbers of students in

instructional programs, when resources limited the amount of information they could gather

about each student, constrained the number of options they could offer, and precluded

much tailoring of programs to individual students once the decision was made. This view

of the problem context encouraged building student models around characteristics that were

fe .1 in number, broadly construed, stable over time, applicable to wide ranges of students,

and discernible with data that were easy to gather and interpret.

Basic concepts in test theory

Test theory research over the century exhibits the extensions, generalizations, and

increasing technical sophistication within a given paradigm that mark "normal science"in

this c. ;e, within the methodological paradigm of characterizing people's tendencies to

behave in prescribed ways in prescribed settings. The inferential considerations that

motivated these developments merit a bri4 review because they transcend the substantive

content of the psychological paradigm under which test theory arose.

Edgeworth (1888, 1892) and Spearman (1904, 1907) launched true-score, or

classical test theory (Cif) by applying mathematical models and statistical tools from

physical measurement to what were seen as comparable problems in mental measurement.

CTT views the average of 1- for- right/0- for -wrong results from a sample of test items from a

domain as a noisy measure of an examinee's "true score," or the hypothetical expected

response across the entire domain of tasks. While each individual item taps different skills

and knowledge in different ways for different people, a total score accumulates over items a

general tendency to answer items from the domain correctly, and conveys direct evidence

for conjectures about a variable so construed (Green, 1978). Different similarly-structured

samples of tasks from the same domain, or parallel tests, are alternate sources of

information about tendencies to behave in the prescribed manner in these situations. Scores

13
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on parallel tests are direct evidence, each with the same weight and the same scope of

coverage, about the same true score.

An inferential concept that plays a central role in test theory is conditional

independence. In statistical terms, variables may be related in a population, but they are

conditionally independent if they are unrelated given the values of another set of variables.

The importance of conditional independence in reasoning is that it expresses the

explanatory relationships and generative principles of a substantive paradigm, around

which inference within that paradigm can be structured:

[C1 onditional independence is not a grace of nature for which we must wait
passively, but rather a psychological necessity which we satisfy actively by
organizing our knowledge in a specific way. An important tool in such
organization is the identification of intermediate variables that induce
conditional independence among observables; if such variables are not in
our vocabulary, we create them. In medical diagnosis, for instance, when
some symptoms di: ectly influence one another, the medical profession
invents a name for that interaction (e.g., "syndrome," "complication,"
"pathological state") and treats it as a new auxiliary variable that induces
conditional independence; dependency between any two interacting systems
is fully attributed to the dependencies of each on the auxiliary variable.

Pearl, 1988, p. 44

In CIT, interest centers on the unobservable variable "true score;" this is the

student model, expressing the aspect of knowledge and skill in terms of which inferences

will be based. Observable scores on actual parallel tests are posited to be conditionally

independent given true score (Lord & Novick, 1968). Spearman's methodological insight

(as distinguished from his thoughts about human abilities per se, or his student model) was

this: Conditional independence of observable test scores, given an unobservable

"intelligence" variable, implies particular patterns of relationships among the observable

scores. This insight provides a framework for organizing observations, for quantifying the

evidence about true scores provided by observed scores, and, at least in principle, for

disconfirming conjectures about behavior in terms of true scores and hence of hypothesized

traits. Test theorists have since been working out and extending the logic of inference in

terms of unobservable variablesexploring the possibilities and the limitations, developing

statistical machinery for estimation and prediction (Lewis, 1986).

The indicator of a test's evidential value under CTT was reliability, the correlation

bet ween parallel forms in a specified population of examinees (which can be estimated from

actual parallel forms when they are available, or, when tests consist of sets of exchangeable
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tasks, from the internal consistency of tasks within a single test). This definition reflects

the classic norm-referenced usage of tests: locating people along a single dimension, for

selection and placement decisions. A high reliability coefficient indicates that a different

sample of tasks of the same kind would order the examinees similarly, leading to the same

decision about most of them. Reliability is a sensible summary of the evidence a test

provides in this specific context (a particular group of students and a domain of tasks), for

this specific purpose (lining the students up comparatively for selection or placement)

under this specific psychological paradigm (assuming that lining them up according to true

scores would capture what matters). Reliability does not characterize the evidential value of

test scores for other inferences, even those framed within the CTT paradigm; for example,

whether a student's true score is abcve a specified cutoff value, or the magnitude of change

in true score from pretest to posttest.

Applying the methodology to behavioral psychology

Messick's phrase "relatively stable" softens the extreme early conception of a trait

which might be described as "inborn and unchangeable"and acknowledges the extended

range of phenomena to which the models and methods of CTT have come to be applied.

One hopes that a student's tendency to perform well on mathematics tasks will change,

through instruction and experience. At any given point in time, however, one might

contemplate gauging her overall proficiency with respect to specified domains of tasks,

perhaps as defined by this week's lesson, or by a consensually defined collection that "a

minimally competent eighth grader" in her state "should be able to answer." This usage

thus extends the application of CTT machinery for inference concerning domain proficiency

beyond selection and placement decisions framed in terms of trait psychology, to

instructional planning and evaluation problems framed in terms of behavioral psychology:

The educational process consists of providing a series of environments that
permit the student to learn new behaviors or modify or eliminate existing
behaviors and to practice these behaviors to the point that he displays them
at some reasonably satisfactory level of competence and regularity under
appropriate circumstances. ... The evaluation of the success of instruction
and of the student's learning becomes a matter of placing the student in a
sample of situations in which the different learned behaviors may
appropriately occur and noting the frequency and accuracy with which they
do occur.

D.R. Krathwohl & D.A. Payi:c, 1971, p. 17-18.

A familiar standardized achievement test consists of a sample of tasks in an area of

learning, and students' "true scores" are tendencies to make correct responses rather than
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incorrect responses, for example, or to write coherent rather than disjointed essays The

object of inference in this case is not a trait in Galton's or Spearman's sense, but simply a

summary of a behavioral tendency in a class of stimulus situationsan overall proficiency

in the prescribed domain of tasks. CTT's data-gathering methodologies and inferential

machinery for summarizing behavior in samples of prescribed situations were in this way

used to support instructional problems cast in behav:oml psychology.

Extending the methodology

Generalizability theory (Cronbach, Nanda, & Rajaratnam, 1972) broadened

the notion of the evidential value of an observed test score, taking into account the

conditions under which the data were obtained and how they were to be used. The

statistical machinery of generalizability theory first characterizes the variation associated

with facets of observation, such as samples of tasks and students, and, when judgment is

involved, numbers and assignment patterns of raters. It can then quantify the evidence that

scores from a observational setting convey for such various inferences as comparisons

between examinees, of examinees against a fixed criterion, and of changes over time; in

terms of the domain of tasks as whole, with different numbers or kinds of raters, in

different subdomains,and so on. Generalizability theory greatly expands the range of

conjectures one can addressthough still within a universe of discourse in which

inferences concern "overall tendency toward specified behavior in a specified domain," as

defined from the point of view of the test designer.

Item response theory (IRT; Hambleton, 1989) originated in the early 1940's as an

attempt to characterize examinees' proficiency independently of the tasks they happened to

have taken, and tasks independently of the examinees who happened to take thema goal

inspired by the analogy to physical measurement. Like CTT, IRT addresses examinees'

proficiency in a prespecified domain of tasks. Beyond CTT, IRT posits a conditional

independence relationship among individual test items given examinees' proficiency

variables. This conceptualization helps solve some practical problems that could be

expressed in the overall-proficiency paradigm, but were poorly handled with CTT tools

(e.g., ( naracterizing the accuracy of estimation for individual examinees, constructing tests

with desired properties, and tailoring tests to examinees in response to their continuing

sequence of responses). Focus remains on overall proficiency, but regularities in

relationships between this overall proficiency and behavior on specific tasks are exploited.



Test theory reconceived

Page 10

Rapid progress has been made by applying developments in statistics to IRT (e.g., Bock &

Aitkin, 1981; Lord, 1980; Mislevy, 1991).

In statistical framework, estimation tools strengthen inference under the assumption

that a model is correct. Just as importantly, however, diagnostic tools help determine when

and where the model failsmore than merely improving applications within the paradigm,

providing clues to see beyond it: "To the extent that measurement and quantitative technique

play an especially significant role in scientific discovery, they do so precisely because, by

displaying serious anomaly, they tell scientists when and where to look for new qualitative

phenomenon" (Kuhn, 1970, p. 205). Example 1 below remarks on diagnostic tools for

using IRT in light of results from cognitive psychology.

Another stream of test theory research has been the analysis of relationships among

scores from different tests. Factor analysis, structural equations modeling, and multitrait-

multimethod analysis all address patterns in joint distributions of scores of several tests, to

the end of better understanding the meaning of variables they define. A researcher might

seek recurring patterns in tests with systematically varying tasks; for example, a tendency

to perform well on scientific inquiry tasks, using scores from multiple-choice items,

computer simulations, and laboratory notebooks (Shavelson, Baxter, & Pine, 1992).

Additional tests with the same formats, but with, say, mathematics content, might be added

to see whether examinees vary systematically as to their performance in various formats, as

distinct from their proficiencies in the content areas (Campbell & Fiske, 1959).

These correlational tools are the main way test theorists have sought to establish the

weight and coverage of evidence test scores provide for inferencesin a word, validity.

Early selection and placement applications focused exclusively on the correlation between

the scores used to make decisions and the scores summarizing outcomes of subsequent

programs, calling this number the validity coefficient. Contemporary views of validity

within the CT' paradigm are considerably broader: "Validity is an integrated evaluative

judgment of the degree to which empirical evidence and theoretical rationales support the

adequacy and appropriateness of inferences and actions based on test scores or other modes

of assessment. ... [W]hat is to be validated is not the test or observation device as such but

the inferences derived from test scores or other indicatorsinferences about score meaning

or interpretation and about the implications for action that the interpretation entails"

(Messick, 1989, pp. 13-14).
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At its leading edge, if not in everyday practice, test theory for mental measurement

has come of agein the sense of having developed methodological tools for gathering and

interpreting data, and a conceptual framework for inference about :,tudents' tendencies to

prescribed behaviors in prescribed settings. The question is the extent to which the

inferences we now want to make for guiding and evaluating education can be framed within

this universe of discourse.

What overall-proficiency measures miss

Through the use of standard test theory, evidence can be characterized and brought

to bear on inferences about students' overall proficiency in behavioral domains, for

determining a students' levels of proficiency, comparing them to others or to a standard, or

gauging changes from one point in time to another. Summarizing competence in these

terms suits the kinds of low-resource, long-lasting decisions it was designed for: sorting,

assigning, or selecting students into educational activitiespresumably with the

overarching objective of helping student, become more proficient. Conjectures about the

nature of this proficiency or how it develops fall largely r atside the mental-measurement

paradigm's universe of discourse. As Stake (1991, p. 245) notes, "The teacher sees

education in terms of mastery of specific knowledge and sophistication in the performance

of specific tasks, not in terms of literacy or the many psychological traits commonly

defined by our tests." Cronbach and Furby (1970) caution that the characterization of

change may lay beyond reach the reach of familiar test theory:

Even when [test scores] X and Y are determined by the same operation
[e.g., a given crr or IRT model for specified behavior in a specified
domain of tasks], they often do not represent the same psychological
processes (Lord, 1958). At different stages of practice ordevelopment
different processes contribute to the performance of a task, Nor is this
merely a matter of increased complexity; some processes drop out, some
remain but contribute nothing to individual differences within an age group.
some are replaced by qualitatively different processes. (p. 76)

Cognitive Psychology

In contrast to schooling applications, most contemporary research into human

abilities does not take place within the trait or behavioral psychological paradigms, but

within what has come to be called the cognitive paradigm. Three key propositions from

cognitive psychology (paraphrasing Lesh & Lamon. 1992, p. 60) hold implications for

instruction and assessment:

1L
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1. People interpret experience and solve probler is by mapping them to internal models.

These internal models must be constructed.

3. Constructed models result in situated knowledge that is gradually extended and

decontextualized to interpret other structurally similar situations.

Knowledge structures have been studied as "mental models" (Johnson-Laird,

1983), "frames" (Minsky, 1975), and "schemas" (Rumelhart, 1980). A schema (using

Rumelhart's term inclusively for convenience) can be roughly thought of as a pattern of

recurring relationships, with variables that in part determine its range of applicability.

Associated with this knowledge are conditions for its use. While experts in various fields

of learning do generally command more facts and concepts than novices, and have richer

interconnections among them, the real distinction lies in their ways of viewing phenomena,

and representing and approaching problems (e.g., Chi, Feltovich, & Glaser, 1981, on

physics; Lesgold, Feltovich, Glaser, & Wang, 1981, on radiology):

Schemata play a central role in all our reasoning processes. Most of the
reasoning we do apparently does not involve the application of general
purpose reasoning skills. Rather, it seems that most of our reasoning ability
is tied to particular bodies of knowledge. ... Once we can "understand" the
situation by encoding it in terms of a relatively rich set of schemata, the
conceptual constraints f the schemata can be brought into play and the
problem readily solve.

Rumelhart, 1980, p. 55.

A schema is "instantiated" when one perceives some of its relationships in a

situation, which focuses attention on filling in missing variables, inferring additional

relationships, and checking for specifics at odds with usual expectations. Much of this

activity is unconscious and automatic, as when one perceives letters in the course of

reading a text. Sometimes aspects of it are conscious and deliberate, as when trying to

determine the text's implications. "The total set of schemata instantiated at a paiticular

moment in time constitutes our internal model of the situation we face at that moment in

time" (Rumelhart, 1980, p. 37). No act of cognition is purely passive or data-driven;

people must ever and always construct meaning, in terms of knowledge structures that have

created up to that point in time. Thus, "...it is useful to think of a schema as a kind of

informal, private, unarticulated theory about the nature of events, objects, or situations that

we face. The total set of schemata we have available for interpreting our world constitutes

our private theory of the nature of reality." (Rumelhart, 1980, p. 37).
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If perception is an active process (selecting, building, and tailoring representations

from currently available schemas), then learning is all the more dynamic: extending,

modifying, and replacing elements to create new structures. In some cases learning is in

fact merely adding bits to existing structures. Sometimes it involves generalizing or

connecting schemas. Other times it involves wholesale abandonment of important parts of

schemas, with replacement by qualitatively different structures (Rumelhart, 1980).

Less is known about actual mechanisms underlying these changes than about

conditions that seem to facilitate them: One encounters a situation with enough that is

familiar to make it meaningful for the most part, but with unanticipated patterns or

consequences. Vosniadou and Brewer (1987) suggest Socratic dialogues and analogies as

pedagogical techniques to facilitate restructuring. Using them effectively requires taking

into account not only the target knowledge structures, but the learner's current structures.

Lesh and Lamon (1992, p. 23) describe how case studies are used in fields where the goals

of instruction concern models for building and understanding complex systems.

RAationships in the specific case are highlighted as the foundation of recurring patterns,

whi-.:11 are then related to other specific cases to promote the construction of more general

encompassing structures. Developing expertise is generally characterized by the increase of

so-called metacognitive skills: self-awareness of using models, and acquiring skill and

flexibility in how to construct them, modify them, and adapt them to the problem at hand

(Glaser, Lesgold, & Lajoie, 1987).

Implications for assessment

Essential characteristics of proficient performance have been described in
various domains and provide useful indices for assessment. We know
that, at specific stages of learning, there exist different integrations of
knowledge, different forms of skill, differences in access to knowledge,
and differences in the efficiency of performance. These stages can define
criteria for test design. We can now propose a set of candidate dimensions
along which subject-matter competence can be assessed. As competence in
a subject-matter grows, evidence of a knowledge base that is increasingly
coherent, principled, useful, and goal-oriented is displayed, and test items
can he designed to capture such evidence. [emphasis original]

R. Glaser. 1991. p. 26.

The first questions in any assessment should be, "What do we want to make

inferences about'?" and "Why do we want to make them?" The answers should be driven

by the nature (..f the knowledge and ski's that the educational experiences are meant to help

students acquire, the psychology of acquiring that knowledge, and a determination of who

0
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will use the information (teachers, parents, legislators, researchers, the students

themselves) and how they will use it. There is no single "true" model for educational

assessment to meet all the objectives this analysis might yield; only models more or less

useful for various purposes, by virtue of the patterns among observations they can express

and the information they can convey thereby. There is no single "best" method for

gathering data; only methods more or less effective at evoking evidence for the inferences

to be made. These factors can vary dramatically across applications. The following issues

are confronted whenel er one attempts to frame assessment within a cognitive paradigm.

The nature of the "student model." Obviously any student model oversimplifies the

reality of cognitionwhatever that may be! In real-world educational assessment, as

Greeno (1976, p. 133) points out, "It may not be critical to distinguish between models

differing in processing details if the details lack important implications for quality of student

performance in instructional situations, or the ability of students to progress to further

stages of knowledge and understanding." For immediate feedback for short-term

instructional decisions, as in intelligent tutoring systems, there is a need for more detail in

the student model. For example, John Anderson's LISP tutor characterizes programming

competence in terms of a specified set of hundreds of production rules, or condition-action

relationships (Anderson & Reiser, 1985).

For accountability purposes, on the other hand, a coarser grain-size may well

suffice. Gathering detail with no intended use would x...aste scarce resources, if only

summary indicators of learning are required to monitor progressassuming these

indicators are supplemented by more detailed and more focused assessment to guide

instruction and curricular refinements along lines that are consistent with the indicators. For

example, Table 1 shows excerpts from the American Council of Teachers of Foreign

Language (ACTFL) guidelines for reading proficiency (ACTFL, 1989). Assessors map

students' observed behavior into this abstract frame of reference. based on theories and

observations of second language acquisition. Note also that the grain-size of these

guidelines is too coarse for specific instructional guidance. Two Mid-Novice students. for

example, might require different experiences to progress to High Novice. Finally, note that

mapping behavior to the ACTFL guidelines requires judgment. Example 2 below concerns

the problem of making abstractly stated guidelines meaningful in practice.

[Table 1 about here]
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The student's point of view. When assessment inferences are grounded in the

cognitive paradigm, one must determine the extent to which the student model should

reflect the student's perception of the tasks in the domain. Standard mental measurement

paradigm attends to the problem stimulus strictly from the assessor's point of view,

administering the same tasks to all examinees and recording outcomes in terms of behavior

categories applied in the same way for all examinees. Behavior constitutes direct evidence

about behavioral tendencies. But in problem solving, "the search process is driven by 'the]

products of the understanding process, rather than the problem stimulus itself' (VanLehn,

1989, p. 532). Because different knowledge structures can lead to the same behavior,

observed behavior constitutes indirect evidence about cognitive structurewhich can be

crucial in an application such as tutoring (see, e.g., Frederiksen & White, 1988). On the

other hand, behavioral summaries may suffice for monitoring progress, as long as

app-opriate mechanisms are in place to guide progress along the way.

Compared with inference about behavioral tendencies, a chain of inference that ends

with conjectures about knowledge structures has additional links, additional sources of

uncertainty. Forging this chain requires knowing how competence in the domain develops.

The inferential challenges routinely faced under the standard mental measurement

paradigm, such as limited information and multiple sources of uncertainty, do not disappear

when interest shifts to inference about cognitive structure. But principled reasoning now

demands, in addition to theory about inference under uncertainty, theory about the nature

and acquisition of competence in the domain, in order to frame conjectures and interpret

observations in their light. What are the important concepts and relationships students are

to learn, and how do they learn them? What evidence can be obtained to gauge their

progress, and help determine what they should do next? Disambiguating alternative

explanations of behavior may also require having to gather not merely more evidence, but

of complementary sources of evidence (Martin & VanLehn, 1993).

Effective assessment under a cognitive perspective requires, first and foremost,

being clear about exactly what inferences one wants to make. This done, stratLgies and

techniques analogous to those long used to make inference under the mental measurement

paradigm more efficient: Avoiding the collection of data ,hat hold little value as evidence for

the targeted inferences. Identifying, then reducing, sources of uncertainty all along the

chain of inference, as when training judges to use a rating scheme, or tuning tasks to evoke

evidence about the skills of interest while eliminating extraneous sources of difficulty.

Using data-capture technologies to reduce costs (e.g., Bennett, 1993, on AI scoring).
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Capitalizing on statistical design and analysis concepts to increase efficiencies (e.g.,

Shoemaker, 1975, on matrix sampling for assessing groups rather than individuals).

The role of conditionality in inference. While test scores do reveal something about

what students know and can do, any assessment task stimulates a unique constellation of

knowledge, skill, strategies, and motivation within each examinee. To some extent in any

assessment comprising multiple tasks, what is relatively hard for some students is relatively

easy for others, depending on the degree to which the tasks relate to the knowledge

structures that students have, each in their own way, constructed. From the trait/behavioral

perspective, this is "noise," or measurement error, leading to low reliability under CTT,

low generalizability under generalizability theory, and low item discrimination parameters

under IRT. It obscures what one is interested in from that perspective, namely, locating

people along a single dimension as to a general behavioral tendency. For inferences

concerning overall proficiency, tasks that don't line up people in the same way are less

informative than ones that do.

Such interactions are fully expected from the cognitive perspective, however, since

knowledge typically develops :first in context, then is extended and decontextualized so it

can be applied to more broadly to other contexts. The in-depth project that provides solid

information about students whose prior knowledge structures it dovetails, becomes an

unconscionable waste of time for students for whom it has no connection. The same task

can therefore reveal either vital evidence or little at all, depending on the target of inference

and the relationship of the information it carries to what is known from other sources.

How to deal with these interactions in assessment depends largely on the purpose of an

assessment.

Consider, for example, a course that helps middle-school students developing their

understandings of proportionality. Each student might begin in a context with which she

was personally familiar, perhaps dividing pizzas among children or planning numbers of

fish for different sized aquariums. Early assessment would address each student's

understanding of proportionality, conditional on the context in which she was working.

Having everyone answer a question about the same context or about a randomly-selected

context would not be an effective way to gather evidence about learning at this stage; most

students would perform poorly in most contexts, and only a few contextsand different

ones for different studentswould provide clues to their nascent understanding. Over the

next few weeks, each student might carry out several investigations, eventually moving to
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unfamiliar contexts. Now a random sample of tasks would be a useful check on the degree

to which each student, starting from his or her own initial configuration of knowledge, had

developed a schema general enough to apply to all the contexts in the lesson. A final

project might challenge students to push proportionality concepts in contexts they chose

themselves. Judges would map performance in possibly quite different contexts to a

common framework of meaning (such as that provided the AC 11-L Reading. Guidelines),

rating the degree to which various aspects of understanding had been evidenced. As in the

early assessment, inference at this higher level of competence would be again conditional

on the context in which it has been evinced.

Examples

Example 1: Integrating Cognitive and Psychometric Models to Measure
Document Literacy

As Snow and Lohman (op cit.) note, sometimes it really is useful to know how

proficient students are in certain domains of tasks, as indicated by on their performance on

a sample of those tasks. But while the trait and behavioral paradigms end with statements

about tendencies in the behaviors of interest, a cognitive perspective can offer benefits of

several kinds even when standard test theory is used to gather, summarize, and characterize

evidence in these applications; for example, in (1) defining and structuring the domain of

tasks. (2) enriching the interpretation of scores, and (3) identifying students for whom the

single-number score is misleading. This section illustrates some these ideas in a measure

of document literacy.

The sixty-three tasks comprising the Survey of Young Adult Literacy (SYAL;

Kirsch & Jungeblut, 1986) were designed to evoke the skills people need to locate and use

information contained in non-prose formats such as forms, tables, charts, signs, and

catalogs. Most required open-ended responses. In addition to information about

responses to individual tasks, the survey was charged with providing summaries of

performance in the population. To this end, an item response theory (IRT) model was fit,

and distributions of overall proficiency in terms of an IRT variable were produced. An IRT

model gives the probability that an examinee will make a particular response to a particular

test item as a function of unobservable parameters for that examinee and that item. Under

the Rasch (1960) model for dichotomous items,

1
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(1)

where Xi is the response to Item j (1 for right, 0 for wrong); 0 is the examinee proficiency

parameter; and Si is the difficulty parameter for Item j. Rewriting this expression as the
logarithm of the odds that the respondent would respond correctly (denoted P11(0)) as

opposed to incorrectly ( Pj0(0))focuses attention on the presumed lack of interaction

between the difficulty of an item and individual respondents:

tn[Pi,(0)/P. (0)] = 0 pi. (2)

The IRT model does not address the question of why some items might be more or

less difficult than others. Fitting an IRT model is an empirical exercise, capturing and

quantifying the patterns that some people tend to answer more items correctly than others,

and some items tend to answered correctly less often than others. The conception of

document literacy competence embodied by the IRT model is simply the tendency to

perform well in the domain of tasks. Creating the domain of the tasks was the crucial step

in establishing the overall proficiency which would constitute the operational definition of

document literacy. From a cognitive perspective, what makes a task difficult for a

particular individual is the match-up between her knowledge structure and the demands of

the task. As noted above, these match-ups vary from one person to another for any given

task. . IRT item difficulty parameter captures only the relative ordering of items on the

average. The summaries of the difficulties of items and the proficiencies of persons that the

IRT parameters embody will therefore forego potential information in any given person's

responses to the extent that items are hard for some people and easy for others.

It is sometimes possible:, nevertheless, to characterize tacks from an expert's point

of viewthat is, in terms of the; knowledge, operations, and strategy requirements, and

working memory load of an ideal solution (e.g., Sternberg, 1977). One may thus gain

insights into the features of tasks that tend to make them relatively easy or hard in a

population of examinees. For example, Scheuneman, Gerritz, and Embretson (1991)

accounted for about 65-percent of the variance in item difficulties in the Reading section of

the National Teacher Examination (NTE) with variables ouilt around syntactic complexity,

semantic content, cognitive demand, and knowledge demand. Scheiblechner (1972) and

Fischer (1973) integrated such cognitive information into IRT with the Linear Logistic Test

Model (LLTM), which models Rasch item difficulty parameters as linear functions of
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effects that correspond to key features of items. Incorporating a residual term to allow for

variation of difficulties among items with the same key features gives

16)=Igki 774 + E).
k=1

(3)

where 11k is the contribution of Feature k to the "difficulty" of an item, for k=1,...,K item

features; qki is the extent to which Feature k is represented in Item j; and ej is a N(0,02)

residual term, with variance 02.

Sheehan and Mislevy (1990) fit this model with item features based on Mosenthal

and Kirsch's (1988) cognitive analysis of the difficulty of document literacy tasks.

Mosenthal and Kirsch first characterize the information contained in documents and

document task directives according to three level: of organization: (1) the organizing

category, (2) the specific category, and (3) the semantic feature. Semantic features are bits

of information that belong to specific categories, which are nested within distinct

organizing categories. After parsing materials and directives in these terms, they defined

three classes of variables they expected to correlate with task difficulty: (1) variables that

characterize the length and organizational complexity of the materials which document tasks

refer to; (2) variables that characterize the length and organizational complexity of task

directives: and (3) variables that characterize the difficulty of the task solution process.

These features accounted for about 80% of the variance of the IRT task difficulty

parameters (P). The structural complexity of material and directives were important

factors, but the highest contributions were associated with process variables. The details of

such analyses can help item writers control the difficulty of the tasks they develop (see, for

example, Embretson, 1985). No items in this study were exceptionally easier or harder

than their modeled features would suggest. Such outhas would direct item writers'

attention to tasks that might be unexpectedly difficult for irrelevant reasons, or

unexpectedly easy because of unintended cues.

The location of items along the Rasch IRT proficiency scale is directly related to the

measures of individuals' proficiencies: items' 0 values indicate the probabilities of success

from people at given levels of 0. Modeling the locations of tasks with particular

configurations of processing requirements on this scale indicates what a person at a given

level of IRT proficiency might be expected to do in terms of requirements of tasksa

probabilistic link between empirical IRT summaries of observed response and cognitive

explanations. An examinee with 0 =1. for example, might be expected to manage
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unfamiliar task_ tnat require matching information across two organizing categories, but

have only even odds on tasks with requiring three matches. While the IRT 0 still only

captures overall comptence, this connection adds a layer of meaning to score

interpretation.

The same connection offers practical benefits: Explciting information from the

cognitive perspective can reduce or even eliminate pretesting meant to estimate item

parameters (Mislevy, Sheehan, & Wingersky, 1993), thus opening the door to using IRT

with tasks created in real time with generative algorithms based on cognitive processing

models (Bejar, 1993; Irvine, Dann, & Anderson, in press). It must be recalled, of course,

that all this modeling is just "on the average." To some degree, what is easy for one person

will be hard for another. This interaction, missing from the IRT summary, can be accessed

through analyses of residuals from the model's fit (e.g., Smith, 1986; Tatsuoka, 1990).

The same processing-feature structure can be used to examine unexpected response patterns

of individual respondents, complementing overall-proficiency 0 estimates with diagnostic

information.

Example 2: AP Studio Art Portfolios

Performance assessment commands attention partly because it provides direct

evidence about productive aspects of knowledge, and partly because of its potential positive

impact on educational practice (Resnick & Resnick, 1989). A distinguishing characteristic

of performance assessment is that the student's response is no longer simply and

unambiguously classified as right or wrong; judgment is required after the response has

been made. That tasks stimulate creative or problem-solving thinking is to no avail unless

the critical information for the targeted inferences can be distilled from the performance.

This example is based on Myford and Mislevy's (1995) study of the 1992 College Board's

Advanced Placement (AP) Studio Art portfolio assessment, which addresses the issues of

establishing shared standards for recognizing what is important in performance and

mapping it into a summarizing structure. It illustrates how the machinery of IRT, created to

model regularities in observed behavior under the presumption that student by task

interactions were "noise," can be used to model regularities in judges' ratings under the

presumption that student by task interactions are expected and to be "conditioned out" of

the rating process.

The AP Studio Art portfolio assessment includes ratings on three distinct sections

of each portfolio, multiple ratings of all sections for all students, and virtually unbridled
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student choice in demonstrating their capabilities and creative problem-solving skills,

within the requirements set forth in the AP Studio Art materials. The portfolio

requirements are intended to ensure that evidence about key aspects of artistic development

will be evoked.' For example, Section A consists of four works submitted in original

form to be rated as to "overall quality," and Section B, the student's "concentration,"

consists of up to 20 slides, a film, or a videotape illustrating a concentration on a student-

selected theme and a paragraph or two describing the student's goals, intentions,

influences, and other factors that help explain the series of works. The portfolios are rated

centrally by artist/educators at the end of the year, using standards set in general terms and

monitored by the AP Art advisory committee. At a "standards setting session," the chief

faculty consultant and table leaders select portfolios to exemplify the committee's

standards. The full team of about 25 readers spends the equivalent of o ,d day of the week-

long scoring session examining, discussing, and practicing with these and other examples

to establish a common framework of meaning.

The Myford and Mislevy study uses two distinct perspectives, "statistical" and

"naturalistic," which are required in tandem to analyze and improve a system the size of AP

I The AP Studio Art portfolio assessment reveals the contrast between "standardized" and "nonstandardized"

assessments as a false dichotomy, a hindrance as we develop broader ranges of assessment methodologies.

Any assessment might be implemented in countless ways; there could be differences, small or large, as to

tasks, administration conditions, degree of student choice, availabiiity of resources, typeface, identity and

number of judges, and so on. Standardizing an aspect of an assessment means limiting the variation that

students encounter in that aspect as a way of sharpening the evidence about certain inferences from what is

observed, while perhaps simultaneously reducing evidence about others. Did Duanli score higher than

Marilyn because she had more time, easier questions, or a lenient grader? Standardizing timing, task

specifications, and rating criteria reduce the chance that this was so: it simultaneously reduces information

about the differential settings in which they might do best. Questions about which aspects of an

assessment to standardize to what degrees arise under all purposes and modes of testing, and under all views

of competence. Answers depend on the evidential value of the observations in view of the purposes of the

assessment, the conception of competence, and the requisite resource demands. As in AP Studio Art,

assessing students' devetoping competence when there is neither a single path toward "better" nor a fixed

and final definition of "best," may require different kinds of evidence from different students (Lcsh, Lamon,

Behr, & Lester, 1992. p. 407).

4. C.
4,
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Studio Art (currently some 7000 portfolios x 5 rating areas in each portfolio x 2 or 3 ratings

for each, totaling over 50,000 judgments). The statistical component reflects thinking

about quality control in industry (e.g., Deming, 1982). One begins by establishing a

statistical framework for analyzing data, to quantify typical and expected sources of

variation (in this case, students, readers, and sections of the portfolios). Variability is

present in any system; within a statistical framework, typical ranges can be modeled. For a

system that is "under statistical control," sources of variability are identified and

observations tend to follow regular patterns. Modeling these patterns is useful first because

it quantifies the uncertainty for final inferences (in this case, students' final ratings on a 1-5

scale) associated with steps or aspects of the process, which can be monitored when the

system is modified. Secondly, the framework highlights observations that lie outside the

usual ranges of variability, often due to special circumstances that can be accommodated

within the existing system or which may suggest changes to the system.

The statistical component employs Linacre's (1989) FACETS model, an extension

of the Rasch model of the previous example. In this application, the logarithm of the odds

that a portfolio section with a "true" measure of 0 will receive from Judge j a rating in

Category k as opposed to Category k+1 on Portfolio Section h with K ordered scale

categories is given as

,en[P j,k(0)11).i.k+1(0)]= e- rk+nh. (4)

where k is the "harshness" parameter associated with Judge j, rib is a "section difficulty"

parameter, and Ts. , for s=1,...,K, is a parameter indicating the relative probability of a

rating in Category s as opposed to Category s-1. This model applies the regularity patterns

embodied in IRT beyond the original "tendency for specified behavior on specified tasks"

usage; the same mathematical structures address regularities in readers' application of

common standards to possibly quite different behaviors in different contexts. For example,

in 1992, one student's concentration focused on "angularity in ceramics," while another's

dealt with an "application of techniques from traditional oriental landscapes to

contemporary themes." The pertinent question is not how well the student who painted

landscapes would have fared with angularity in ceramics, but how consistently raters

viewing either concentration would map the performances into the same evaluative

framework. It would be easier to compare students' performances if everyone were

required to work with angularity in ceramics, but that would provide no evidence about a
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crucial aspect of development the course is intended to promote, namely, conceptualizing

and confronting one's own challenges.

In essence, FACETS fits a main-effects model to log-odds of ratings. Variation

among students, as a main effect, is anticipated. Estimates of portfolio "measures" can be

obtained, along with corresponding indices of the degree of uncertainty associated with

those estimatesthat is, a characterization of the weight of evidence, taking into account

such factors as variation among readers and among sections, and the extent of disagreement

among readers. Variation among readers, as a main effect, is not desirable. It indicates

that some readers tend to be more harsh or lenient than others, no matter which portfolio

they are rating. The uncertainty this entails for final ratings can be reduced by improving

feedback on the application of standards to individual readers or in training sessions, or by

adjusting scores for individual readers. Little variation of this type was present in the 1992

Studio Art data, alleviating concerns about systematic differences between readers from

secondary and higher-education settings, with more or less experience as an art educator,

or with more or less experience as an AP reader. Variation at the level of readers-by-

portfolios, as indicated, by residuals from the main-effects model, is also undesirable but

may reduced by such means as improving reader training, sharpening the definition of

standards, or distinguishing aspects that should be rated separately. Particular

reader/portfolio combinations that are especially unusual in view of the main effects are

highlighted in the form of outliers from the model.

By identifying outliers, statistical analyses can indicate where to focus attention

but not what to look for. These cases are unusual precisely because the expected causes of

variation do not explain them. For example. a harsh reader's rating of 1 on a portfolio that

receives l's and 2's from other readers is not surprising; a lenient reader's rating of 1 for a

portfolio that receives mostly 3's and 4's is. Further insight requires information outside

the statistical framework, to seek new hypotheses for previously unrecognized factors.

Such investigations constitute the "naturalistic" aspect of the project. Discussion were held

with experienced readers of 9 portfolios each for Section A and Section B that received

highly discrepant ratings, in order to gain insights into the judging process in general, and

into the features that made rating these particular portfolios difficult. Avenues for

exploration that emerged in these discussions included continued development of verbal

rubrics, particularly as a learning tool for new readers; having students write statements for

color and design sections, as for concentrations, to help readers understand the challenges

the students were attacking; and refining directives and providing additional examples for
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Section B to clarify to both students and readers the interplay between the written and

productive aspects of a concentration.

The attractive features of performance assessment include the potential for

instructional value and the elicitation of direct evidence about constructive aspects of

knowledge. This study illustrates how models originally developed under the trait

psychological paradigm but extended to a cognitive/developmental paradigm can be

employed to characterize the weight of evidence about target inferences, and to provide

information to monitor and improve the system over time.

Example 3: Mixed Number Subtraction

The form of the data in this example is familiarright /wrong responses to open-

ended mixed-number subtraction problemsbut inferences are carried out in terms of a

more complex student model suggested by cognitive analyses (Mislevy, 1995). The model

is aimed at the level of short-term instructional guidance. It concerns which of two

strategies students apply to problems, and whether they can carry out the procedures that

problems require under those strategies. While competence in domains like this can be

modeled at a much finer grain-size (e.g., VanLehn's 1990 analysis of whole-number

subtraction), the model in this example does incorporate the fact that the "difficulty" of an

item depends on the strategy a student employs. Rather than discarding this interaction as

noise, as CTT or IRT would, the model exploits it as a source of evidence about a student's

strategy usage.

The data and the cognitive analysis upon which the student model is grounded anm

due to Kikumi Tatsuoka (1987, 1990). The middle-school students she studied

characteristically solved mixed number subtraction problems using one of two strategies:

Method A: Convert mixed numbers to improper fractions, subtract, then reduce if

necessary.

Method B: Separate mixed numbers into whole number and fractional parts, subtract as

two subproblems, borrowing one from minuend whole number if

necessary, then reduce if necessary.

The responses of 530 students to 15 items were analyzed. As shown in Table 2,

each item was characterized in terms of which of seven subprocedures required to solve it

with Method A and those required to solve it with Method B. The student model consists
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of a variable for which strategy a student uses. and which of the seven subprocedures the

student is able to apply. The structure connecting the unobservable parameters of the

student model and the observable responses is that ideally, a student using Method X (A or

B, as appropriate to that student) would correctly answer items that under that strategy

require only subprocedures the student has at his disposal (see Falmagne, 1989. Tatsuoka.

1990, and Haertel & Wiley, 1993). However, sometimes students miss items even under

these conditions (false negatives), and sometimes they answer items correctly when they

don't possess the requisite subprocedures by other, possibly faulty. strategies (false

positives). The connection between observations and student-model variables is thus

probabilistic rather than deterministic.

[Table 2 about here]

Inference in complex networks of interdependent variables such as these is a

burgeoning topic in statistical research, spurred by applications in such diverse areas as

forecasting, pedigree analysis, troubleshooting, and medical diagnosis (e.g., Lauritzen &

Spiegelhalter, 1988; Pearl, 1988; see Wand & Mislevy, 1992, Martin & VanLehn, 1993,

and Mislevy, 1995, for further discussion of inference networks in cognitive assessment)."

Inference networks exploit conditional independence relationshipsin this example,

conditional independence of item responses given procedure knowledge and strategy

usage. Figure 1 depicts the structural relationships in an inference network for Method B

only. Nodes represent variables, and arrows represent dependence relationships. The joint

probability distribution of all variables can be represented as the product of conditional

probabilities, with a factor for each variable's conditional probability density given its

"parents." Five nodes represent basic subprocedures that a student who uses Method B

needs to solve various kinds of items. Conjunctive nodes, such as "Skills1&2," represent.

for example, either having or not having both Skill 1 and Skill 2. Each subtraction item is

the "child" of a node representing the minimal conjunction of skills needed to solve it with

Method B. The relationship between such a node and an item incorporates false positive

and false negative probabilities. Cognitive theory inspired the structure of this network: the

numerical values of conditional probability relationships were approximated with results

2 Calculations for the present example were carried out with Andersen. Jensen, Olesen, and Jensen's (1989)

HCGIN program and Noetic System's (1991) ERGO.



Test theory reconceived

Page 26

from Tatsuoka's (1983) "rule space" analysis of the data, with only students classified as

Method B users.

[Figure 1 about here]

Figure 2 depicts base rate probabilities of skill possession and item percents-

correct, or the state of knowledge one would have about a student we know uses Method B

before observing any item responses. Figure 3 shows how beliefs change after observing

mostly correct answers to items that don't require Skill 2, but incorrect answers to most of

those that do. The updated probabilities for the five skills shown in Table 3 show

substantial shifts away from the base-rate, toward the belief that the student commands

Skills 1, 3, 4, and possibly 5, but almost certainly not Skill 2.

[Figures 2 & 3 and Table 3 about here]

A similar network was built for Method A. Figure 4 incorporates it and the Method

B network into a single network that is appropriate if one doesn't know which strategy a

student uses. Each item now has three parents: minimally sufficient sets of subprocedures

under Method A and under Method B, and the new node "Is the student using Method A or
Method B?" An item like 74 - 5-1.T is hard under Method A but easy under Method B; an

item like 22i. -1-2.T is just the opposite. A response vector with most of the first kind of items

right and those of the second kind wrong shifts belief toward Method B. The opposite

pattern shifts belief toward the use of Method A. A pattern with mostly wrong answers

gives posterior probabilities for Method A and Method B that are about the same as the base

rates, but low probabilities for possessing any of the skills. One learns little about which

strategy such a student is using, but there is evidence that subprocedure skills are not being

employed effectively. Similarly, a pattern with mostly right answers again gives posterior

probabilities for Method A and Method B that are about the same as the base rates, but high

probabilities for possessing all of the skills.

[Figure 4 about here]

To connect this example with the criterion-referenced testing (CRT) movement of

the 1960's mentioned above, the groups of items with a common skill-set parent in Figure

1 could be viewed as a sample of tasks from a narrowly-defined behavioral domain, and

probabilities of the possessing the skill-set might be viewed as a tendency to perform well

in that domain. The present model goes beyond the CRT framework in two ways. First,
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the interrelationships among such mini-domains through the delineation of procedure

requirements within and across strategies provides the formerly-missing connection

between competence in the mini-domains and how competence develops: it develops as

students learn skills and strategies that cut across mini-domains in determinable ways.

Secondly, the groupings of items that are equivalent under Method A are different from the

groupings based on Method B. Recognizing that the salient features of an item depend on

how a student is approaching it takes a toward addressing Thompson's (1982) question,

"What can this person be thinking so that his actions make sense from his perspective?"

This example could be extended in many ways, both as to the nature of the

observations and the nature of the student model. With the present student model, one

might explore additional sources of evidence about strategy use: monitoring response

times, tracing solution steps, or simply asking the students to describe their solutions!

Each has tradeoffs in terms of cost and evidential value, and each could be sensible in some

applications but not others. An important extension of the student model would be to allow

for strategy switching (Kyllonen, Lohman, & Snow, 1984). Adults often decide whether

to use Method A or Method B for a given item only after gauging which strategy would be

easier to apply. The variables in this more complex student model would express the

tendencies of a student to employ different strategies under different conditions. Students

would then be mixtures in and of themselves, with "always use Method A" and "always

use Method B" as extreme cases. Mixture problems are notoriously hard statistical

problems; carrying out inference in the context of this more ambitious student model would

certainly require the richer information mentioned above. Be land and Mislevy (1992)

tackled this problem in the domain of proportional reasoning by additionally using

students' explanations of solutions of balance-beam problems.

Example 4: An Intelligent Tutoring System

Intelligent tutoring systems (ITSs) are predicated on some form of student modeling

to guide tutor behavior. Inferences about what a student knows and does not know can

affect the presentation and pacing of problems, quality of feedback and instruction, and

determination of when a student has completed some set of tutorial objectives. This

example discusses the HYDRIVE ITS (Gitomer, Steinberg, & Mislevy, 1995), which, in

the course of implementing principles of cognitive diagnosis, adapts a number of test

theory concepts and tools to implement principles of probability-based reasoning.
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HYDRIVE is an intelligent video-disc based tutoring/assessment system designed

to facilitate the development of troubleshooting skills for the F-15 aircraft's hydraulics

systems. Hydraulics systems are involved in the operation of flight controls, landing gear,

the canopy, the jet fuel starter, and aerial refueling. HYDRIVE is designed to simulate

many of the important cognitive and contextual features of troubleshooting on the flight

line. A problem begins with a video sequence in which a pilot, who is about to take off or

has just landed, describes some aircraft malfunction to the hydraulics technician (e.g., the

rudders do not move during pre-flight checks). HYDRIVE's interface then offers the

student several options, such as the following: performing troubleshooting procedures by

accessing video images of aircraft components and acting on those components; reviewing

on-line technical support materials, including hierarchically organized schematic diagrams;

and making an instructional selections at any time during troubleshooting, in addition to or

in place of instruction the system itself recommends. The state of the aircraft system,

including changes brought about by user actions, is modeled by HYDRIVE's system

model. Performance is monitored by evaluating how the student uses available

information, as chronicled in the system model, to direct troubleshooting actions.

HYDRIVE's student model is used to diagnose the quality of specific troubleshooting

actions, and to characterize student understanding in terms of more general constructs such

as knowledge of systems, strategies, and procedures that are associated with

troubleshooting proficiency.

The grain-size and the nature of a student model in an ITS ought to be targeted to

the instructional options available (Kieras, 1988). A model will first need to include a set

of cognitive features related to performance, as revealed by analyses of the skills and

understandings needed for accomplished performance. But because accomplished

performance derives from the complex structuring of knowledge and skills, a cognitive

model of student performance in an ITS will thus need to represent the interrelationships of

target skills and understandings.

Wenger (1987) describes three levels of information that such a model might

address. Early ITSs focusing on the behavioral level were usually concerned with the

correctness of student behaviors referenced against some model of expert performance.

For example, SOPHIE-I (Brown, Burton & Bell, 1975) contrasted student behaviors with

domain performance simulations as a basis for offering corrective feedback. The epistemic

level of information is concerned with particular knowledge states of individuals. The

SHERLOCK ITS (Lesgold, Eggan, Katz, & Rao, 1992) makes inferences about the goals

3
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and plans students are using to guide their actions during problem solving. Feedback is

meant to respond to "what the student is thinking." The individual level addresses broader

assertions about the individual that transcend particular problem states. Whereas the

epistemic level of diagnosis might lead to the inference that "the student has a faulty plan

for procedure X", the individual level of information might include the assertion that "the

student is poor at planning in contexts A and B."

This individual level of information has received the least attention in the field of

intelligent tutoring assessment. Conversely, test theory has focused mainly on the

individual level, with little explicit attention to the epistemic level. One might assert, for

example, that an individual has high ability in mathematics, without an account of the

epistemic conditions that characterize high ability. By bridging between the individual and

epistemic levels of information, a student model can have both the specificity to facilitate

immediate feedback in a problem-solving situation, and the generality of individual

information to help sequence problems, moderate instruction, and track proficiency in

general terms. The HYDRIVE student model is designed to support generalized claims

about aspects of student troubleshooting proficiency from detailed epistemic analysis of

particular actions within the system. Abstractions, such as a student's strategic

understanding, are the target constructs of the troubleshooting domain upon which the

instructional components focus.

Figure 5 is a simplified version of portions of the inference network through which

the HYDRIVE student model is operationalized and updated within a given problem. Four

groups of variables can be distinguished: (1) The rightmost nodes are the "observable

variables," actually the results of rule-driven epistemic analyses of student's actions in a

given situation. (2) Their immediate parents are knowledge and strategy requirements for

two prototypical situations addressed in this simplified diagram. (3) The long column of

variables in the middle concerns aspects of subsystem and strategic knowledge,

corresponding to instructional options. (4) To their left are summary characterizations of

more generally construed proficiencies. The structure of the network, the variables that

capture the progression from novice to expert hydraulics troubleshooter, and the

conditional probabilities implemented in the network are based on in-depth analyses of

experts and novices verbalizations of their problem-solving actions (Means & Gott, 1988),

and the observation of small numbers of students actually working through the problems in

the HYDRIVE context.
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[Figure 5 about here]

Strictly speaking, the values of the "observable" variables are not observable

behaviors, but interpreted outcomes of analyses of episodes of students' actions that

characterize a sequence as, for example, inferred "space-splitting" in situations in which

this is possible, "serial elimination," "redundant action'," "irrelevant action," or "remove-

and-replace"--all defined in terms of the current state of the system model. HYDRIVE

employs a relatively small number of interpretation rules (-25) to classify each

troubleshooting action in terms of both the student and the best strategy. An example of a

student strategy rule is:

IF active path which includes failure has not been created and the student
creates an active path which does not include failure and edges removed from
the active problem area are of one power class, THEN the student strategy is
power path splitting.

As potential observable variables, these action episodes are not predetermined and

uniquely defined in the manner of usual assessment items, since a student could follow a

virtually infinite number of paths through the problem. Rather than attempting to model all

possible system states and specific possible actions within them, HYDRIVE posits

equivalence classes of states, each of which could arise many times or not at all in a given

student's work. Members of these equivalence classes are treated as conditionally

independent, given the status of the requisite skill and knowledge requirements. Two such

classes are illustrated in Figure 5: A canopy situation in which space-splitting is not

possible, and a landing gear situation in which space-splitting is possible. Figure 5 depicts

belief after observing, in three separate situations from the canopy/no-split class, one

redundant and one irrelevant action (both ineffectual troubleshooting moves) and one

remove-and-replace (serviceable but inefficient). Serial elimination would have been the

best strategy in this case, and is most likely when the student has strong knowledge of this

strategy and all relevant subsystems. Remove-and-replace is more likely whe t a student

possesses some subsystem knowledge but lacks familiarity with serial elimination. Weak

subsystem knowledge increases chances of irrelevant and redundant actions. All

interpreted actions are possible from all combinations of student variable values; sometimes

students with good understanding carry out redundant tests, for example, am sometimes

students who lack understanding unwittingly make the same action an expert would. These

possibilities must be reflected in the conditional probabilities of actions, given the values of

student model variables.
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Subsystem old strategy variables are meant to summarize tendencies in interpreted

behaviors at a level addressed by instruction, and to disambiguate patterns of actions 'n

light of the fact that inexpert actions can have several causes. As a result of the three

inexpert canopy actions discussed above, Figure 5 shows belief shifted toward lower

values for serial elimination, and for all subsystem variables directly involved in the

situation (mechanical, hydraulic, and canopy knowledge). Any or all could be a problem,

since all are required for high likelihoods for expert actions. Variables for subsystems not

directly :evolved in these situations are also lower, because to varying extents, students

familiar with one subsystem tend to be familiar with others, and, to a lesser extent, students

familiar with subsystems tend to be familiar with troubleshooting strategies. These

relationships are expressed by means of the more generalized system and strategy

knowledge variables at the left of the figure. These variables serve to exploit the indirect

information about aspects of knowledge not directly tapped, and to summarize broadly

construed aspects of proficiency for evaluation and problem-selection.

Figures 6 and 7 represent the state of belief that would result after observing two

different sets of actions in situations involving the landing gear, in which space-splitting is

possible. Figure 6 shows the results of three more inexpert action sequences. Status on all

subsystem and strategy variables is further downgraded, and reflected in the more

generalized summary variables. Figure 7 shows the results of observing three good

actions: two space-splits and one serial elimination. Belief about strategic skill has

increased, as have beliefs about subsystems involved in the landing gear situations.

Problems in mechanical and canopy subsystem knowledge are now the most plausible

explanations of the three inexpert canopy situation actions. The diffuse belief at the

generalized proficiency level results from the uneven profile of subsystem knowledge,

despite fairly accurate information about individual aspects of the student's knowledge.

[Figures 6 and 7 about here]

Large numbers of solutions from acknowledged experts and novices of various

types were not available to estimate the conditional probabilities in the HYDPIVE inference

network. Initial values were set subjectively, and revised through an iterative model-

checking prozess: positing values, entering actions suggested from the cognitive task

analysis as proxies for what the student might do within the tutor, then evaluating the

behavior of the network to determine whether all nodes were behaving sensibly in terms of

the cognitive model. The initial probabilities were unsatisfactory in several ways. At
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times, student estimates would be updated too rapidly. At other times, they wouldn't be

updated despite actions that should affect belief about student competence. Some updates

moved in unexpected directions. Because all the probabilities are set at the individual node

level, the behavior of the entire network is difficult to anticipate. However, by repeatedly

applying data, and evaluating the network's behavior, probabilities can be tuned so that the

system behaves in a manner consistent with human judgments of performance. As on-line

data is obtained, the probabilities can be fine-tuned. Moreover, because a student's current

status leads to predictions of the classes of actions in given situations, systematic

discrepancies can suggest revision of the structure of the network itself.

HYDRIVE employs the same probability-based reasoning that underlies test theory,

in an assessment model meant to support instruction as well as evaluation, from the

perspective of cognitive psychology, in the context of interactive learning. An articulated

cognitive model for performance in the domain provides a coherent framework to move

from detailed analysis of discrete actions, to inferences about more general student

characteristics. This individual level of information seems necessary to direct instruction to

issues that transcend particular problem states and to support broader claims about

competence. Since assessment is fundamentally a process of making generalized

inferences based on specific information, an approach with test-theoretic roots can

contribute to the development of assessment in the ITS world.

Conclusion

Educational test theory has begun to follow multiple paths of progress, to support

inference and decision-making from the perspective of contemporary cognitive psychology.

Specialists in test theory must work with educators and researchers in learning areas to

develop models that express key aspects of developing competence, and inferential

methodologies that support defensible and cost-effective data-gathering and interpretation in

practical problems. Methodological tools developed under the trait and behavioral

paradigms, properly reconceived, will serve this purposes in some applications; new tools

will be needed for others. There are many directions to move beyond the simple

psychological models and data types of familiar test theory, each presenting its own

challe.iges. Test theorists can play a vital role in this endeavornot solely as experts at

solving inferential problems cast in trait and behavioral terms, but as experts in evidence

and infe;mce in school learning problems as cast in psychological frameworks that suit

those problems.

44, (1
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Table 3

Prior and Posterior Probabilities of Subprocedure Profile

Skills) Prior Probability Posterior Probability

1 .883 .999

2 .618 .056

3 .937 .995

4 .406 .702

5 .355 .561

1 & 2 .585 .056

1 & 3 .853 .994

1, 3, & 4 .392 .702

1, 2, 3, & 4 .335 .007

1, 3, 4, & 5 .223 .492

1, 2, 3, 4, & 5 .200 .003

3 0
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6/7 - 4/7 Item 6
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whole number
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Convert whole
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Figure 1

Structure of Inference Network for Method B
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Figure 2

Prior Probabilities for Method B
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and Three Inexpert Actions in Landing Gear Situations
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Status of Student Model after Observing Three Inexpert Actions in Canopy Situations

and Three Expert Actions in Landing Gear Situations
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